Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET.
نویسندگان
چکیده
Magnetic resonance imaging (MRI)-guided partial volume effect correction (PVC) in brain positron emission tomography (PET) is now a well-established approach to compensate the large bias in the estimate of regional radioactivity concentration, especially for small structures. The accuracy of the algorithms developed so far is, however, largely dependent on the performance of segmentation methods partitioning MRI brain data into its main classes, namely gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). A comparative evaluation of three brain MRI segmentation algorithms using simulated and clinical brain MR data was performed, and subsequently their impact on PVC in 18F-FDG and 18F-DOPA brain PET imaging was assessed. Two algorithms, the first is bundled in the Statistical Parametric Mapping (SPM2) package while the other is the Expectation Maximization Segmentation (EMS) algorithm, incorporate a priori probability images derived from MR images of a large number of subjects. The third, here referred to as the HBSA algorithm, is a histogram-based segmentation algorithm incorporating an Expectation Maximization approach to model a four-Gaussian mixture for both global and local histograms. Simulated under different combinations of noise and intensity non-uniformity, MR brain phantoms with known true volumes for the different brain classes were generated. The algorithms' performance was checked by calculating the kappa index assessing similarities with the "ground truth" as well as multiclass type I and type II errors including misclassification rates. The impact of image segmentation algorithms on PVC was then quantified using clinical data. The segmented tissues of patients' brain MRI were given as input to the region of interest (RoI)-based geometric transfer matrix (GTM) PVC algorithm, and quantitative comparisons were made. The results of digital MRI phantom studies suggest that the use of HBSA produces the best performance for WM classification. For GM classification, it is suggested to use the EMS. Segmentation performed on clinical MRI data show quite substantial differences, especially when lesions are present. For the particular case of PVC, SPM2 and EMS algorithms show very similar results and may be used interchangeably. The use of HBSA is not recommended for PVC. The partial volume corrected activities in some regions of the brain show quite large relative differences when performing paired analysis on 2 algorithms, implying a careful choice of the segmentation algorithm for GTM-based PVC.
منابع مشابه
Anatomically guided voxel-based partial volume effect correction in brain PET: Impact of MRI segmentation
Partial volume effect is still considered one of the main limitations in brain PET imaging given the limited spatial resolution of current generation PET scanners. The accuracy of anatomically guided partial volume effect correction (PVC) algorithms in brain PET is largely dependent on the performance of MRI segmentation algorithms partitioning the brain into its main classes, namely gray matte...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2006